3.1.70 \(\int \frac {\sec ^7(c+d x)}{(a+a \sec (c+d x))^4} \, dx\) [70]

3.1.70.1 Optimal result
3.1.70.2 Mathematica [A] (verified)
3.1.70.3 Rubi [A] (verified)
3.1.70.4 Maple [A] (verified)
3.1.70.5 Fricas [A] (verification not implemented)
3.1.70.6 Sympy [F]
3.1.70.7 Maxima [A] (verification not implemented)
3.1.70.8 Giac [A] (verification not implemented)
3.1.70.9 Mupad [B] (verification not implemented)

3.1.70.1 Optimal result

Integrand size = 21, antiderivative size = 193 \[ \int \frac {\sec ^7(c+d x)}{(a+a \sec (c+d x))^4} \, dx=\frac {21 \text {arctanh}(\sin (c+d x))}{2 a^4 d}-\frac {576 \tan (c+d x)}{35 a^4 d}+\frac {21 \sec (c+d x) \tan (c+d x)}{2 a^4 d}-\frac {43 \sec ^3(c+d x) \tan (c+d x)}{35 a^4 d (1+\sec (c+d x))^2}-\frac {288 \sec ^2(c+d x) \tan (c+d x)}{35 a^4 d (1+\sec (c+d x))}-\frac {\sec ^5(c+d x) \tan (c+d x)}{7 d (a+a \sec (c+d x))^4}-\frac {2 \sec ^4(c+d x) \tan (c+d x)}{5 a d (a+a \sec (c+d x))^3} \]

output
21/2*arctanh(sin(d*x+c))/a^4/d-576/35*tan(d*x+c)/a^4/d+21/2*sec(d*x+c)*tan 
(d*x+c)/a^4/d-43/35*sec(d*x+c)^3*tan(d*x+c)/a^4/d/(1+sec(d*x+c))^2-288/35* 
sec(d*x+c)^2*tan(d*x+c)/a^4/d/(1+sec(d*x+c))-1/7*sec(d*x+c)^5*tan(d*x+c)/d 
/(a+a*sec(d*x+c))^4-2/5*sec(d*x+c)^4*tan(d*x+c)/a/d/(a+a*sec(d*x+c))^3
 
3.1.70.2 Mathematica [A] (verified)

Time = 1.72 (sec) , antiderivative size = 121, normalized size of antiderivative = 0.63 \[ \int \frac {\sec ^7(c+d x)}{(a+a \sec (c+d x))^4} \, dx=\frac {11760 \text {arctanh}(\sin (c+d x)) \cos ^8\left (\frac {1}{2} (c+d x)\right ) \sec ^4(c+d x)-\frac {1}{16} \sec ^6(c+d x) (15234 \sin (c+d x)+22192 \sin (2 (c+d x))+19667 \sin (3 (c+d x))+11400 \sin (4 (c+d x))+3873 \sin (5 (c+d x))+576 \sin (6 (c+d x)))}{70 a^4 d (1+\sec (c+d x))^4} \]

input
Integrate[Sec[c + d*x]^7/(a + a*Sec[c + d*x])^4,x]
 
output
(11760*ArcTanh[Sin[c + d*x]]*Cos[(c + d*x)/2]^8*Sec[c + d*x]^4 - (Sec[c + 
d*x]^6*(15234*Sin[c + d*x] + 22192*Sin[2*(c + d*x)] + 19667*Sin[3*(c + d*x 
)] + 11400*Sin[4*(c + d*x)] + 3873*Sin[5*(c + d*x)] + 576*Sin[6*(c + d*x)] 
))/16)/(70*a^4*d*(1 + Sec[c + d*x])^4)
 
3.1.70.3 Rubi [A] (verified)

Time = 1.42 (sec) , antiderivative size = 211, normalized size of antiderivative = 1.09, number of steps used = 18, number of rules used = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.810, Rules used = {3042, 4303, 3042, 4507, 3042, 4507, 27, 3042, 4507, 3042, 4274, 3042, 4254, 24, 4255, 3042, 4257}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sec ^7(c+d x)}{(a \sec (c+d x)+a)^4} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^7}{\left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )^4}dx\)

\(\Big \downarrow \) 4303

\(\displaystyle -\frac {\int \frac {\sec ^5(c+d x) (5 a-9 a \sec (c+d x))}{(\sec (c+d x) a+a)^3}dx}{7 a^2}-\frac {\tan (c+d x) \sec ^5(c+d x)}{7 d (a \sec (c+d x)+a)^4}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^5 \left (5 a-9 a \csc \left (c+d x+\frac {\pi }{2}\right )\right )}{\left (\csc \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^3}dx}{7 a^2}-\frac {\tan (c+d x) \sec ^5(c+d x)}{7 d (a \sec (c+d x)+a)^4}\)

\(\Big \downarrow \) 4507

\(\displaystyle -\frac {\frac {\int \frac {\sec ^4(c+d x) \left (56 a^2-73 a^2 \sec (c+d x)\right )}{(\sec (c+d x) a+a)^2}dx}{5 a^2}+\frac {14 a \tan (c+d x) \sec ^4(c+d x)}{5 d (a \sec (c+d x)+a)^3}}{7 a^2}-\frac {\tan (c+d x) \sec ^5(c+d x)}{7 d (a \sec (c+d x)+a)^4}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\frac {\int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^4 \left (56 a^2-73 a^2 \csc \left (c+d x+\frac {\pi }{2}\right )\right )}{\left (\csc \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^2}dx}{5 a^2}+\frac {14 a \tan (c+d x) \sec ^4(c+d x)}{5 d (a \sec (c+d x)+a)^3}}{7 a^2}-\frac {\tan (c+d x) \sec ^5(c+d x)}{7 d (a \sec (c+d x)+a)^4}\)

\(\Big \downarrow \) 4507

\(\displaystyle -\frac {\frac {\frac {\int \frac {9 \sec ^3(c+d x) \left (43 a^3-53 a^3 \sec (c+d x)\right )}{\sec (c+d x) a+a}dx}{3 a^2}+\frac {43 \tan (c+d x) \sec ^3(c+d x)}{d (\sec (c+d x)+1)^2}}{5 a^2}+\frac {14 a \tan (c+d x) \sec ^4(c+d x)}{5 d (a \sec (c+d x)+a)^3}}{7 a^2}-\frac {\tan (c+d x) \sec ^5(c+d x)}{7 d (a \sec (c+d x)+a)^4}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {\frac {\frac {3 \int \frac {\sec ^3(c+d x) \left (43 a^3-53 a^3 \sec (c+d x)\right )}{\sec (c+d x) a+a}dx}{a^2}+\frac {43 \tan (c+d x) \sec ^3(c+d x)}{d (\sec (c+d x)+1)^2}}{5 a^2}+\frac {14 a \tan (c+d x) \sec ^4(c+d x)}{5 d (a \sec (c+d x)+a)^3}}{7 a^2}-\frac {\tan (c+d x) \sec ^5(c+d x)}{7 d (a \sec (c+d x)+a)^4}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\frac {\frac {3 \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^3 \left (43 a^3-53 a^3 \csc \left (c+d x+\frac {\pi }{2}\right )\right )}{\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}dx}{a^2}+\frac {43 \tan (c+d x) \sec ^3(c+d x)}{d (\sec (c+d x)+1)^2}}{5 a^2}+\frac {14 a \tan (c+d x) \sec ^4(c+d x)}{5 d (a \sec (c+d x)+a)^3}}{7 a^2}-\frac {\tan (c+d x) \sec ^5(c+d x)}{7 d (a \sec (c+d x)+a)^4}\)

\(\Big \downarrow \) 4507

\(\displaystyle -\frac {\frac {\frac {3 \left (\frac {\int \sec ^2(c+d x) \left (192 a^4-245 a^4 \sec (c+d x)\right )dx}{a^2}+\frac {96 a^3 \tan (c+d x) \sec ^2(c+d x)}{d (a \sec (c+d x)+a)}\right )}{a^2}+\frac {43 \tan (c+d x) \sec ^3(c+d x)}{d (\sec (c+d x)+1)^2}}{5 a^2}+\frac {14 a \tan (c+d x) \sec ^4(c+d x)}{5 d (a \sec (c+d x)+a)^3}}{7 a^2}-\frac {\tan (c+d x) \sec ^5(c+d x)}{7 d (a \sec (c+d x)+a)^4}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\frac {\frac {3 \left (\frac {\int \csc \left (c+d x+\frac {\pi }{2}\right )^2 \left (192 a^4-245 a^4 \csc \left (c+d x+\frac {\pi }{2}\right )\right )dx}{a^2}+\frac {96 a^3 \tan (c+d x) \sec ^2(c+d x)}{d (a \sec (c+d x)+a)}\right )}{a^2}+\frac {43 \tan (c+d x) \sec ^3(c+d x)}{d (\sec (c+d x)+1)^2}}{5 a^2}+\frac {14 a \tan (c+d x) \sec ^4(c+d x)}{5 d (a \sec (c+d x)+a)^3}}{7 a^2}-\frac {\tan (c+d x) \sec ^5(c+d x)}{7 d (a \sec (c+d x)+a)^4}\)

\(\Big \downarrow \) 4274

\(\displaystyle -\frac {\frac {\frac {3 \left (\frac {192 a^4 \int \sec ^2(c+d x)dx-245 a^4 \int \sec ^3(c+d x)dx}{a^2}+\frac {96 a^3 \tan (c+d x) \sec ^2(c+d x)}{d (a \sec (c+d x)+a)}\right )}{a^2}+\frac {43 \tan (c+d x) \sec ^3(c+d x)}{d (\sec (c+d x)+1)^2}}{5 a^2}+\frac {14 a \tan (c+d x) \sec ^4(c+d x)}{5 d (a \sec (c+d x)+a)^3}}{7 a^2}-\frac {\tan (c+d x) \sec ^5(c+d x)}{7 d (a \sec (c+d x)+a)^4}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\frac {\frac {3 \left (\frac {192 a^4 \int \csc \left (c+d x+\frac {\pi }{2}\right )^2dx-245 a^4 \int \csc \left (c+d x+\frac {\pi }{2}\right )^3dx}{a^2}+\frac {96 a^3 \tan (c+d x) \sec ^2(c+d x)}{d (a \sec (c+d x)+a)}\right )}{a^2}+\frac {43 \tan (c+d x) \sec ^3(c+d x)}{d (\sec (c+d x)+1)^2}}{5 a^2}+\frac {14 a \tan (c+d x) \sec ^4(c+d x)}{5 d (a \sec (c+d x)+a)^3}}{7 a^2}-\frac {\tan (c+d x) \sec ^5(c+d x)}{7 d (a \sec (c+d x)+a)^4}\)

\(\Big \downarrow \) 4254

\(\displaystyle -\frac {\frac {\frac {3 \left (\frac {-\frac {192 a^4 \int 1d(-\tan (c+d x))}{d}-245 a^4 \int \csc \left (c+d x+\frac {\pi }{2}\right )^3dx}{a^2}+\frac {96 a^3 \tan (c+d x) \sec ^2(c+d x)}{d (a \sec (c+d x)+a)}\right )}{a^2}+\frac {43 \tan (c+d x) \sec ^3(c+d x)}{d (\sec (c+d x)+1)^2}}{5 a^2}+\frac {14 a \tan (c+d x) \sec ^4(c+d x)}{5 d (a \sec (c+d x)+a)^3}}{7 a^2}-\frac {\tan (c+d x) \sec ^5(c+d x)}{7 d (a \sec (c+d x)+a)^4}\)

\(\Big \downarrow \) 24

\(\displaystyle -\frac {\frac {\frac {3 \left (\frac {\frac {192 a^4 \tan (c+d x)}{d}-245 a^4 \int \csc \left (c+d x+\frac {\pi }{2}\right )^3dx}{a^2}+\frac {96 a^3 \tan (c+d x) \sec ^2(c+d x)}{d (a \sec (c+d x)+a)}\right )}{a^2}+\frac {43 \tan (c+d x) \sec ^3(c+d x)}{d (\sec (c+d x)+1)^2}}{5 a^2}+\frac {14 a \tan (c+d x) \sec ^4(c+d x)}{5 d (a \sec (c+d x)+a)^3}}{7 a^2}-\frac {\tan (c+d x) \sec ^5(c+d x)}{7 d (a \sec (c+d x)+a)^4}\)

\(\Big \downarrow \) 4255

\(\displaystyle -\frac {\frac {\frac {3 \left (\frac {\frac {192 a^4 \tan (c+d x)}{d}-245 a^4 \left (\frac {1}{2} \int \sec (c+d x)dx+\frac {\tan (c+d x) \sec (c+d x)}{2 d}\right )}{a^2}+\frac {96 a^3 \tan (c+d x) \sec ^2(c+d x)}{d (a \sec (c+d x)+a)}\right )}{a^2}+\frac {43 \tan (c+d x) \sec ^3(c+d x)}{d (\sec (c+d x)+1)^2}}{5 a^2}+\frac {14 a \tan (c+d x) \sec ^4(c+d x)}{5 d (a \sec (c+d x)+a)^3}}{7 a^2}-\frac {\tan (c+d x) \sec ^5(c+d x)}{7 d (a \sec (c+d x)+a)^4}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\frac {\frac {3 \left (\frac {\frac {192 a^4 \tan (c+d x)}{d}-245 a^4 \left (\frac {1}{2} \int \csc \left (c+d x+\frac {\pi }{2}\right )dx+\frac {\tan (c+d x) \sec (c+d x)}{2 d}\right )}{a^2}+\frac {96 a^3 \tan (c+d x) \sec ^2(c+d x)}{d (a \sec (c+d x)+a)}\right )}{a^2}+\frac {43 \tan (c+d x) \sec ^3(c+d x)}{d (\sec (c+d x)+1)^2}}{5 a^2}+\frac {14 a \tan (c+d x) \sec ^4(c+d x)}{5 d (a \sec (c+d x)+a)^3}}{7 a^2}-\frac {\tan (c+d x) \sec ^5(c+d x)}{7 d (a \sec (c+d x)+a)^4}\)

\(\Big \downarrow \) 4257

\(\displaystyle -\frac {\frac {\frac {3 \left (\frac {96 a^3 \tan (c+d x) \sec ^2(c+d x)}{d (a \sec (c+d x)+a)}+\frac {\frac {192 a^4 \tan (c+d x)}{d}-245 a^4 \left (\frac {\text {arctanh}(\sin (c+d x))}{2 d}+\frac {\tan (c+d x) \sec (c+d x)}{2 d}\right )}{a^2}\right )}{a^2}+\frac {43 \tan (c+d x) \sec ^3(c+d x)}{d (\sec (c+d x)+1)^2}}{5 a^2}+\frac {14 a \tan (c+d x) \sec ^4(c+d x)}{5 d (a \sec (c+d x)+a)^3}}{7 a^2}-\frac {\tan (c+d x) \sec ^5(c+d x)}{7 d (a \sec (c+d x)+a)^4}\)

input
Int[Sec[c + d*x]^7/(a + a*Sec[c + d*x])^4,x]
 
output
-1/7*(Sec[c + d*x]^5*Tan[c + d*x])/(d*(a + a*Sec[c + d*x])^4) - ((14*a*Sec 
[c + d*x]^4*Tan[c + d*x])/(5*d*(a + a*Sec[c + d*x])^3) + ((43*Sec[c + d*x] 
^3*Tan[c + d*x])/(d*(1 + Sec[c + d*x])^2) + (3*((96*a^3*Sec[c + d*x]^2*Tan 
[c + d*x])/(d*(a + a*Sec[c + d*x])) + ((192*a^4*Tan[c + d*x])/d - 245*a^4* 
(ArcTanh[Sin[c + d*x]]/(2*d) + (Sec[c + d*x]*Tan[c + d*x])/(2*d)))/a^2))/a 
^2)/(5*a^2))/(7*a^2)
 

3.1.70.3.1 Defintions of rubi rules used

rule 24
Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4254
Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> Simp[-d^(-1)   Subst[Int[Exp 
andIntegrand[(1 + x^2)^(n/2 - 1), x], x], x, Cot[c + d*x]], x] /; FreeQ[{c, 
 d}, x] && IGtQ[n/2, 0]
 

rule 4255
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d* 
x]*((b*Csc[c + d*x])^(n - 1)/(d*(n - 1))), x] + Simp[b^2*((n - 2)/(n - 1)) 
  Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] 
&& IntegerQ[2*n]
 

rule 4257
Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] 
 /; FreeQ[{c, d}, x]
 

rule 4274
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + 
(a_)), x_Symbol] :> Simp[a   Int[(d*Csc[e + f*x])^n, x], x] + Simp[b/d   In 
t[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]
 

rule 4303
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_), x_Symbol] :> Simp[(-d^2)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d 
*Csc[e + f*x])^(n - 2)/(f*(2*m + 1))), x] + Simp[d^2/(a*b*(2*m + 1))   Int[ 
(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 2)*(b*(n - 2) + a*(m - n 
 + 2)*Csc[e + f*x]), x], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 
0] && LtQ[m, -1] && GtQ[n, 2] && (IntegersQ[2*m, 2*n] || IntegerQ[m])
 

rule 4507
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[d*(A*b 
- a*B)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^(n - 1)/(a*f*( 
2*m + 1))), x] - Simp[1/(a*b*(2*m + 1))   Int[(a + b*Csc[e + f*x])^(m + 1)* 
(d*Csc[e + f*x])^(n - 1)*Simp[A*(a*d*(n - 1)) - B*(b*d*(n - 1)) - d*(a*B*(m 
 - n + 1) + A*b*(m + n))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, 
A, B}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)] && G 
tQ[n, 0]
 
3.1.70.4 Maple [A] (verified)

Time = 0.48 (sec) , antiderivative size = 148, normalized size of antiderivative = 0.77

method result size
derivativedivides \(\frac {-\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{7}}{7}-\frac {9 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}}{5}-13 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}-111 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )+\frac {4}{\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{2}}+\frac {36}{\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1}-84 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )-\frac {4}{\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{2}}+\frac {36}{\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1}+84 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{8 d \,a^{4}}\) \(148\)
default \(\frac {-\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{7}}{7}-\frac {9 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}}{5}-13 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}-111 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )+\frac {4}{\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{2}}+\frac {36}{\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1}-84 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )-\frac {4}{\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{2}}+\frac {36}{\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1}+84 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{8 d \,a^{4}}\) \(148\)
parallelrisch \(\frac {\left (-23520 \cos \left (2 d x +2 c \right )-23520\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )+\left (23520 \cos \left (2 d x +2 c \right )+23520\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )-34168 \left (\cos \left (d x +c \right )+\frac {5885 \cos \left (2 d x +2 c \right )}{8542}+\frac {1497 \cos \left (3 d x +3 c \right )}{4271}+\frac {3873 \cos \left (4 d x +4 c \right )}{34168}+\frac {72 \cos \left (5 d x +5 c \right )}{4271}+\frac {19387}{34168}\right ) \sec \left (\frac {d x}{2}+\frac {c}{2}\right )^{6} \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{2240 a^{4} d \left (1+\cos \left (2 d x +2 c \right )\right )}\) \(149\)
risch \(-\frac {i \left (735 \,{\mathrm e}^{10 i \left (d x +c \right )}+5145 \,{\mathrm e}^{9 i \left (d x +c \right )}+16660 \,{\mathrm e}^{8 i \left (d x +c \right )}+34300 \,{\mathrm e}^{7 i \left (d x +c \right )}+51842 \,{\mathrm e}^{6 i \left (d x +c \right )}+61054 \,{\mathrm e}^{5 i \left (d x +c \right )}+55556 \,{\mathrm e}^{4 i \left (d x +c \right )}+39788 \,{\mathrm e}^{3 i \left (d x +c \right )}+21351 \,{\mathrm e}^{2 i \left (d x +c \right )}+7329 \,{\mathrm e}^{i \left (d x +c \right )}+1152\right )}{35 d \,a^{4} \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right )^{2} \left ({\mathrm e}^{i \left (d x +c \right )}+1\right )^{7}}-\frac {21 \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )}{2 a^{4} d}+\frac {21 \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}{2 a^{4} d}\) \(191\)

input
int(sec(d*x+c)^7/(a+a*sec(d*x+c))^4,x,method=_RETURNVERBOSE)
 
output
1/8/d/a^4*(-1/7*tan(1/2*d*x+1/2*c)^7-9/5*tan(1/2*d*x+1/2*c)^5-13*tan(1/2*d 
*x+1/2*c)^3-111*tan(1/2*d*x+1/2*c)+4/(tan(1/2*d*x+1/2*c)-1)^2+36/(tan(1/2* 
d*x+1/2*c)-1)-84*ln(tan(1/2*d*x+1/2*c)-1)-4/(tan(1/2*d*x+1/2*c)+1)^2+36/(t 
an(1/2*d*x+1/2*c)+1)+84*ln(tan(1/2*d*x+1/2*c)+1))
 
3.1.70.5 Fricas [A] (verification not implemented)

Time = 0.29 (sec) , antiderivative size = 250, normalized size of antiderivative = 1.30 \[ \int \frac {\sec ^7(c+d x)}{(a+a \sec (c+d x))^4} \, dx=\frac {735 \, {\left (\cos \left (d x + c\right )^{6} + 4 \, \cos \left (d x + c\right )^{5} + 6 \, \cos \left (d x + c\right )^{4} + 4 \, \cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}\right )} \log \left (\sin \left (d x + c\right ) + 1\right ) - 735 \, {\left (\cos \left (d x + c\right )^{6} + 4 \, \cos \left (d x + c\right )^{5} + 6 \, \cos \left (d x + c\right )^{4} + 4 \, \cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}\right )} \log \left (-\sin \left (d x + c\right ) + 1\right ) - 2 \, {\left (1152 \, \cos \left (d x + c\right )^{5} + 3873 \, \cos \left (d x + c\right )^{4} + 4548 \, \cos \left (d x + c\right )^{3} + 2012 \, \cos \left (d x + c\right )^{2} + 140 \, \cos \left (d x + c\right ) - 35\right )} \sin \left (d x + c\right )}{140 \, {\left (a^{4} d \cos \left (d x + c\right )^{6} + 4 \, a^{4} d \cos \left (d x + c\right )^{5} + 6 \, a^{4} d \cos \left (d x + c\right )^{4} + 4 \, a^{4} d \cos \left (d x + c\right )^{3} + a^{4} d \cos \left (d x + c\right )^{2}\right )}} \]

input
integrate(sec(d*x+c)^7/(a+a*sec(d*x+c))^4,x, algorithm="fricas")
 
output
1/140*(735*(cos(d*x + c)^6 + 4*cos(d*x + c)^5 + 6*cos(d*x + c)^4 + 4*cos(d 
*x + c)^3 + cos(d*x + c)^2)*log(sin(d*x + c) + 1) - 735*(cos(d*x + c)^6 + 
4*cos(d*x + c)^5 + 6*cos(d*x + c)^4 + 4*cos(d*x + c)^3 + cos(d*x + c)^2)*l 
og(-sin(d*x + c) + 1) - 2*(1152*cos(d*x + c)^5 + 3873*cos(d*x + c)^4 + 454 
8*cos(d*x + c)^3 + 2012*cos(d*x + c)^2 + 140*cos(d*x + c) - 35)*sin(d*x + 
c))/(a^4*d*cos(d*x + c)^6 + 4*a^4*d*cos(d*x + c)^5 + 6*a^4*d*cos(d*x + c)^ 
4 + 4*a^4*d*cos(d*x + c)^3 + a^4*d*cos(d*x + c)^2)
 
3.1.70.6 Sympy [F]

\[ \int \frac {\sec ^7(c+d x)}{(a+a \sec (c+d x))^4} \, dx=\frac {\int \frac {\sec ^{7}{\left (c + d x \right )}}{\sec ^{4}{\left (c + d x \right )} + 4 \sec ^{3}{\left (c + d x \right )} + 6 \sec ^{2}{\left (c + d x \right )} + 4 \sec {\left (c + d x \right )} + 1}\, dx}{a^{4}} \]

input
integrate(sec(d*x+c)**7/(a+a*sec(d*x+c))**4,x)
 
output
Integral(sec(c + d*x)**7/(sec(c + d*x)**4 + 4*sec(c + d*x)**3 + 6*sec(c + 
d*x)**2 + 4*sec(c + d*x) + 1), x)/a**4
 
3.1.70.7 Maxima [A] (verification not implemented)

Time = 0.28 (sec) , antiderivative size = 231, normalized size of antiderivative = 1.20 \[ \int \frac {\sec ^7(c+d x)}{(a+a \sec (c+d x))^4} \, dx=-\frac {\frac {280 \, {\left (\frac {7 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac {9 \, \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}}\right )}}{a^{4} - \frac {2 \, a^{4} \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + \frac {a^{4} \sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}}} + \frac {\frac {3885 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + \frac {455 \, \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} + \frac {63 \, \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}} + \frac {5 \, \sin \left (d x + c\right )^{7}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{7}}}{a^{4}} - \frac {2940 \, \log \left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1\right )}{a^{4}} + \frac {2940 \, \log \left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - 1\right )}{a^{4}}}{280 \, d} \]

input
integrate(sec(d*x+c)^7/(a+a*sec(d*x+c))^4,x, algorithm="maxima")
 
output
-1/280*(280*(7*sin(d*x + c)/(cos(d*x + c) + 1) - 9*sin(d*x + c)^3/(cos(d*x 
 + c) + 1)^3)/(a^4 - 2*a^4*sin(d*x + c)^2/(cos(d*x + c) + 1)^2 + a^4*sin(d 
*x + c)^4/(cos(d*x + c) + 1)^4) + (3885*sin(d*x + c)/(cos(d*x + c) + 1) + 
455*sin(d*x + c)^3/(cos(d*x + c) + 1)^3 + 63*sin(d*x + c)^5/(cos(d*x + c) 
+ 1)^5 + 5*sin(d*x + c)^7/(cos(d*x + c) + 1)^7)/a^4 - 2940*log(sin(d*x + c 
)/(cos(d*x + c) + 1) + 1)/a^4 + 2940*log(sin(d*x + c)/(cos(d*x + c) + 1) - 
 1)/a^4)/d
 
3.1.70.8 Giac [A] (verification not implemented)

Time = 0.33 (sec) , antiderivative size = 155, normalized size of antiderivative = 0.80 \[ \int \frac {\sec ^7(c+d x)}{(a+a \sec (c+d x))^4} \, dx=\frac {\frac {2940 \, \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1 \right |}\right )}{a^{4}} - \frac {2940 \, \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1 \right |}\right )}{a^{4}} + \frac {280 \, {\left (9 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 7 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )}^{2} a^{4}} - \frac {5 \, a^{24} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} + 63 \, a^{24} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 455 \, a^{24} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 3885 \, a^{24} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{a^{28}}}{280 \, d} \]

input
integrate(sec(d*x+c)^7/(a+a*sec(d*x+c))^4,x, algorithm="giac")
 
output
1/280*(2940*log(abs(tan(1/2*d*x + 1/2*c) + 1))/a^4 - 2940*log(abs(tan(1/2* 
d*x + 1/2*c) - 1))/a^4 + 280*(9*tan(1/2*d*x + 1/2*c)^3 - 7*tan(1/2*d*x + 1 
/2*c))/((tan(1/2*d*x + 1/2*c)^2 - 1)^2*a^4) - (5*a^24*tan(1/2*d*x + 1/2*c) 
^7 + 63*a^24*tan(1/2*d*x + 1/2*c)^5 + 455*a^24*tan(1/2*d*x + 1/2*c)^3 + 38 
85*a^24*tan(1/2*d*x + 1/2*c))/a^28)/d
 
3.1.70.9 Mupad [B] (verification not implemented)

Time = 13.46 (sec) , antiderivative size = 160, normalized size of antiderivative = 0.83 \[ \int \frac {\sec ^7(c+d x)}{(a+a \sec (c+d x))^4} \, dx=\frac {21\,\mathrm {atanh}\left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )}{a^4\,d}-\frac {9\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5}{40\,a^4\,d}-\frac {{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^7}{56\,a^4\,d}-\frac {13\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3}{8\,a^4\,d}-\frac {7\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )-9\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3}{d\,\left (a^4\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4-2\,a^4\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+a^4\right )}-\frac {111\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{8\,a^4\,d} \]

input
int(1/(cos(c + d*x)^7*(a + a/cos(c + d*x))^4),x)
 
output
(21*atanh(tan(c/2 + (d*x)/2)))/(a^4*d) - (9*tan(c/2 + (d*x)/2)^5)/(40*a^4* 
d) - tan(c/2 + (d*x)/2)^7/(56*a^4*d) - (13*tan(c/2 + (d*x)/2)^3)/(8*a^4*d) 
 - (7*tan(c/2 + (d*x)/2) - 9*tan(c/2 + (d*x)/2)^3)/(d*(a^4*tan(c/2 + (d*x) 
/2)^4 - 2*a^4*tan(c/2 + (d*x)/2)^2 + a^4)) - (111*tan(c/2 + (d*x)/2))/(8*a 
^4*d)